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MULTIPLE REGRESSION IN A TWO -WAY LAYOUT1

by

Dennis V. Lindley

University College London

Suppose that in each of a number, m, of groups a random variable y has

a linear regression on a set of predictor variables x1, x2, ..., xp A

Bayesian approach to the estimation of the m regression lines, valid under

certain assumptions of exchangeability, has been given by Lindley (1969, 1970).

The theory has been described as part of the Bayesian analysis of the general

linear model by Lindley and Smith (1972)--see, in particular, Section 3.2.

The basic ideas have been extensively developed and put into an operational

form by Jackson, Novick, and Thayer (1971) under the name of m-group regression

and implemented in a major application by Novick, Jones, and Cole (1972).

Technical details concerning the computer program are described by Jones and

Novick (1972).

The present paper extends these ideas to the case where the groups, now

m times n in all, are arranged in a two-way layout into m rows and n columns,

these still being a regression of y on the x's within each group. The sort

of application we have in mind is where the rows correspond to high schools

and the columns to colleges: the predictor variables might be the performances

in various course areas taken while at high school and the random variable

the first-year performance at college. Then "cell" (i, j) of the two-way

table will contain data on the performances of those subjects who passed from

high school i to college j . In the case of DP-group regression, the estimation

1The research reported herein was performed pursuant to Grant No.

OEG-0-72-0711 with the Office of Education, U.S. Department of Health,

Education, and Welfare. Contractors undertaking such projects under

Government sponsorship are encouraged to express freely their professional

judgment in the conduct of the project. Points of view or opinions stated

do not, therefore, necessarily represent official Office of Education

position or policy.
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of any single regression can be improved by using all the data and not just

that from the group under consideration. Our aim is to effect similar

improvements in the case of the two-way layout.

The situation where There are no predictor variables is a non-trivial

special case. There, in our example, we would merely have the college score,

and the familiar analysis-of-variance type of situation arises in which

we try to separate out the variation into components due to schools (rows)

and colleges (columns). This has been discussed by Lindley (1972). It turns

out that the regression case is a straighforward multivariate generalization

of the ...pecial situation. Essentially, all that happens is that the scalar

equations for the special case become vector and matrix results in the general

problem. The reader is, therefore, advised, to read the simpler, earlier

paper first. Having understood the basic ideas in the scalar context, the

difficulties in the present, multivariate case should be substantially

reduced.

The data are supposed to be generated by a model in which

p

E(Yijk) = sI, eijsxijks
(1)

for i = 1, 2, ..., m; j = 1, 2, ..., n; k = 1, 2, ..., r.. . There, y is

the random variable having linear regression on p variables xl, x2, ..., xp .

The suffix i refers to the row, j to the column, s to the predictor variable,

and k to the replicate number within a cell. Hence,
ijs

is the regression

coefficient of y on x
s

in the group that is in the i
th

row and 3
th

column.
.

It will further be supposed that the distribution of the y-values,

conditional on the x-values and the regression coefficients, is normal; that

they are all independent and have constant variance o
2

. It is possible to

relax this last condition and have the variances possibly different from

cell to cell. This was done in the earlier papers referred to, but the
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work of Jackson, et al. (1971)'suggests that the practical effect of such

a generalization is minimal. Since it complicates the algebra, which is

already formidable enough, we have not dealt with the heteroscedastic case

here. The reader who wishes to study it will find the ideas needed

discussed in Appendix 4 of Lindley (1972). This paper will subsequently be

referred to as L .

In most applications, one of the predictor variables, say xl, will be

a constant, say one, to allow for a constant term in (1). If so, that

equation may be written

p

E(Yijk) eijl aE2eijsxijks

If p = 1, we have simply E(yijk) = Ow the third suffix for 0 being

redundant, and the situation is exactly that discussed in L . The prior

structure assigned to the mn values 0
ij

was to suppose

ij
= p + a.

1
+ $ + y

j i j

where ai - N(0, aa2 ), kj - N(0, ab), yij - N(0, allall these distributions

being independent, ani the prior knowledge of u to be vague. The reasons

given for this assumption were stated at length in L, but essentially, it

follows from supposed exchangeability between rows and between columns plus

assumptions of additivity and normality.

Now, we can equally write (1) as

nT

E(Yijk) qjlcijk

where 0
ij

is a vector given by

0
j

= (0
ijl'

0
ij2' 0ijp)i

(2)
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the vector of regression coefficients from cell (i, j), and Not a similar

vector with typical element xi
ks

We make the same assumption of ,,rior
j

structure about the vector eij that we made about the scalar .

11

Specifically, we assume

0 = p + a + B. + Yi
ij -j (3)

where ai Np(9, Ea), Rj Np(2, /ij Np(9, Ec), all these distributions

being independent and the prior knowledge of y being vague. (There, N means

multivariate, p-dimensional normal, and the E's are the dispersion matrices.)

Essentially, this means that the set of regression coefficients in cell (i, j)

haspossibleeffects(a)duetotherw,tothecolumi1(8.), and to an

interaction between row and column (y..). The remarks in L about the restrictive
-ij

nature of this assumption and the necessity of checking its reasonable

validity before using the methods developed with it as a basis, apply with

even more force in this multivariate case.

The form (3) implies the following covariance structure for the vectors

-13

cov(2ij,
T
2rs)

, i # r, j # s , (4a)

cov(0
ij'

e
T

) = E
-a

, j 0 s , (4h)
- -is

cov(0 , 0
T

) =
-ij -rj -b'

r ,

cov(0 , 6
T ) =E+E+

-ij -ij -a -b -c '

(4c)

(4d)

and we alternatively express our prior structure by saying that the vectors

Qij have means p and dispersions described by equations (4). In the language

of the general linear model developed by Lindley and Smith (1972), the second
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stage has a dispersion matrix C2 whose elements are described by (4): these

elements themselves being matrices. To f...nd our estimates of O.., we use
-13

the general theory in the way described in Appendix 1 of L . To do this, we

have first to invert g2 . This is most easily done by solving the linear

equations in z, C
2-
z = a . These equations* are easily seen to be [cf. (1.3)

- -

oft.]

Eczij + nE
az.

+ mEbz = aij .--l

For any array u1,, vector or scalar, write

uij =u
ij
-ui -u.

.3
+ u

1
= U, U.. ,Ui.

'

104 = U - U
P

Then, (5) may be rewritten

where

and

= U

V z + V z + V z a
-o-ij -n-i' -m-.'

+ V
j -mnz-''

=
' .ij

V
o
=Ec ,Vn =Ec + nE

a
,V-m =Ec + mE

b
,

- - - - - - -

V
mn

= E
c
+ nE

a
+ mE

-b
.

- -

(5)

(6)

(7)

*Notice that in writing out these and similar equations in mnp unknowns, we

have written them as mn equations each involving p-vectors. In this way, their

structure is most easily understood and rated to the scalar forms in L .
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The summation of (6) over all i, j immediately gives Vianzl = a.;

over j alone gives V nz!
.
= al.; over i alone gives V z'. = a'., and hence,I

substituting in (6) V z = a'oij ij
The solution to cg = a is, therefore,*

z
ij

= V
o n
lal. + V la' + V

-m
1
a'. + V

-mn
la'

- - -13 - --3 -" (8)

The coefficients of a.
1j ij

(not a ) on the right-hand side of this equation

are the elements in C
2

1
. If the elements of this matrix are termed the

coprecisions, and abhreviated cop, we have [cf. equations (4) above]

cop(0
ij

, ors) = H , i r, j s , (9a)-

j ' -
0cop (01 . . = H

a
+ H

o'
j s , (9b)-1s - -

cop(2ij, 2rj ) = Hb + Ho, i # r , (9c)

cop(2ij, 2ij ) = He + Ha + Hb + Ho (9d)

where

and

mnll = V
-1

- V
-1

- V
-1

+ V
-1

, (10a)

nH
a

= - Vol + V
n

1

'
(10b)

mlib Yo Ym
-1(10c)

H = V
1 . (10d)

-c -o

Having found C21, we need to evaluate

C
-1

A A2(
-1

A )
-1 T

C
-1

-2 2 -22 -2 -2-2

*The reader can check that with p = 1, this agrees with the result (1.10) in

L . The new form given here is more convenient in the matrix case.
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where A
2

is a matrix of mnp rows and p columns all, mn, of whose n x p

submatrices are unit matrices. This last fact follows since every has
ij

the same expectation, p . It is easy to verify that the column totals for

the submatrices in C2
1

are all V
-1

, and that from this it follows that (11)
-mn

is a square matrix of dimension mnp all of whose p x-p submatrices are

(mnV
mn

)
-1

. This completes the calculations needed at the second stage of

the model.

The first stage of the model is described by (2), and in the notation

of the general linear model, this is given in terms of matrix Al of a form

with matrices Xij down the "diagonal" and zeros elsewhere, the matrix X.i.

havingrijrowsandpcolonnswithtypical(k,$)elementxijks.The

corresponding dispersion matrix, C1, is simply a
2

times a unit matrix, and

so the matrix A C
1

1
A
1
that occurs in the usual normal equations has diagonal

1 -

submatrices XiTjija -2
, all of size p x p, and zeros elsewhere. X..X.. is

-ij-ij

simply the matrix of sums of squares and products of the x-values occurring

in cell (i, j); the typical (s, t) element being Ex..
ijkt

x . Similarly,

on the other side of the normal equation, we shall have terms Ey.. x..
ijk ijks

These produce a column vector consisting of subvectors, a typical one of which

is X..y
-2

where y
ij

is the vector of elements y
ijk-ij ij

We are now in a position to write down the equations satisfied by the

modal estimates of Oijs assuming £s, £b, Ec, and c
2

to be known [cf. equations

(3.1) of In writing these out, we should distinguish between and the
iis

estimate Otjs, say, but to avoid even more complicated notation, the asterisk

will he omitted. The equations* are

(14 3-Cij)-5ija

-2
)2ij nVa2i.

+ fmnfl - V
mn

JO = X. y
ij

.o . (I?)
-o -

*In the notation of Appendix 7 of L, they are D
I
0 = d .

-1



[The corresponding equations in the scalar case are (3.1) in L .j This is

the main result of the paper since it provides the adjusted estimates of the

regression coefficients that replace the usual least-squares estimates.

The latter would be the solution of the normal equations

X
T

X O.. = X
T

ijij13 ij
y.
1j

obtained from (12) by omitting all the H-matrices and ymn . In the normal

equations, the regression coefficients in cell (i, j) are not involved with the

coefficients in any other cell, whereas all occur in (12). The basic equations

may be rewritten in terms of the original matrices Ea, and Ec using

equations (10) and (7). The result is

(E
c

1
+ XT

-ij
X
1.3
x-2)0

ij
+ I(E

c
+ nE

a
)-1 - Ec

j
8.-- - L.- - - -1.

_

_l
+ [a

c
+ mE

b
)-1 z-lo

.3
+ F (E

c
+ nE

a
)
-1

(E
c

+ IDE
b
)-lie

c -c ..

= XT
-2

ijy ij
a (13)

To complete the analysis, it only remains to provide eouations for the

estimation of E
a'

E
b'

E
c'

and o
2

. To do this, we return to the structure of
- - -

the vectors of regression coefficients, 8ij, described in (3), resulting in

the covariance values given in (4). In the last of these results, (4d), the

three dispersion matrices occur in combination, and any attempt to base an

estimation procedure on this has difficulty in separating the components. This

can be seen again in (13) where, for example, Ea always occurs in association with

i
c

. To circumvent this difficulty, we redescribe the model in terms of an

extra stage, and suppose, firstly that O. - N
p
(a

i 3
+ fi., E

c
) and then that both

-

(xi - Np(ua, a) and (31 - NpQ13, .13) with vague prior knowledge of
1'a

and ;..,11) .
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Clearly, this is an alternative way of expressing (3). With this model, we

can write down the joint probability distribution of all the quantities in

the problem. After integration over the diffuse priors for 'a and pb, this

is easily seen to be proportional to (where R = Zr.)i

X

X

X

-c

-a

-b

1
E fy

jk -
T

x..,)
-R

exp 1 - %-i
i,j,k

'smnexp
- 1/2 E (21.4 - ai (3j)

T
Ec

1
(2ii ai

i,j

-1/2(m-1) [ Ei - a )TE 1(a - ctexp - 1 011

-
-1/2(n-1)expE 1/2Z(B. §.)

T 1 (14)

In explanation, the first line describes the likelihood of the data,

the second the distribution of the regression coefficients given the row and

column values (essentially, this is the interaction term), and the last two

lin+-!s provide the distributions of the row and column values, after removal

of their means by integration.

This is, 'ay Bayes theorem, proportional to the posterior distribution of

(0i.), (a.), and (Bi)--if the dispersion are known. The modal values of the
-

0's have been found as the solutions to equations (12) or (13). Ye now

determine the similar estimates of the a's and B's. To do this, differentiate

the logarithm of (14) with respect to ai and Bi with the results

and

nE
-1

(0

mEc1(0.j

- a - B.) ) + E
a

1
(a

i
-

- -

-j) + Eb1(8
- -3

a )
-

a.) =
-

0

0 .

(15)



Summation of the first (say) set over i gives a. + B. = 8.. and, hence,

eliminating 0, from a member of that set, we have

nE
-1

(0. - 0 ) = (nE
-1

+
-1

)(a. a)
-c -1. -c -a

Or

10

Similarly,

(a a.)

(5
J

- S.)

= (E
c
+ nE

a
)-inE

a
(0.

- - -1.

= (E
c
+ mE

b
)-imE

b
(8

-j

- 0

0

) .

)

(16)

Since the estimates of the O's are known, these equations determine the

estimates of the g's and A's.

To complete the analysis, we have to insert prior distribution for o
2

,

Ea, Ey and E
c

. We suppose that these are independent, and for o
2

there is no

objection to using the usual vague prior proportional to 0
-2

. With the

three dispersion matrices, one cannot be so cavalier. In default of any

better idea, we assume that E
-1

has a Wishart distribution with degrees of
-u

freedom v
u

and matrix A
u
(u = a, b, c). Specifically, E

-1
has density

proportional to

-a

1/2(v
a
-p-1)

ova
expie- 1/2v

a
tr(A

a-
Ea1

j-a
)] (17)

with E
1
and E

c

1
, similarly. The choice of values for the v's and 's will

-

be discussed below.

The procedure now is to combine the prior distribution, exemplified by

(17), with the other terms in (14) so obtaining the joint posterior distribution

for which the modal values can be determined by differentiation and equating

the results to zero. The analysis closely parallels that given by Lindley

and Smith (1972, Section 5.2) and the results are that



and

02
= E (y. -

T
Y )2AR + 2) ,

i,j,k
-ijijk

z = A + E (e. a ) (0 a
c cc . 0

j ij
) + v p 1)

J1

11

(18a)

(18b)

rr

Eb -= (t.)(cti q,)1/(m + vb - p - 2) , (18c)

E
a

= [v
a-a
A +

3
t3- .)(§i §.)1 ./(n + va - p - 2) (184:1)

(in this set of equations, as in (12), the estimates--for example e
ij
--sh)uld

strictly replace the values like eij written there.)

To perform the analysis, values have to be specified for the v's and A's.

Since vu measures ones prior precision about Eu
, it is natural to take v

u
as

small as possible. The least value compatible with the convergence of the

prior distributions in (17) is v
u
= p, and we sugges, taking this value.

There remains the choice of A .

-u

In the form we have written (17), pal is the expectation of E -
1
so that

pa can be thought of as ones prior opinion of the dispersion of the a's, and

similarly, Ab for the B's and Ac for the y's. One suggestion is to rescale

the regression variables x
1,

x2, ..., x so that in the new scale, the prior

opinions about scatter of all the a are the same, then will l have a
-

constant diagonal. However, once this scaling has been done, we are not

free to make a new scaling sr, that Ab (and pc) have constant diagonals. Hence,

in general, this device is not available. Nevertheless, we conjecture that in

many cases a common scaling might be reasonable. It would, for example, be

a fairly sophisticated form of prior knowledge that thought that ail (the last

suffix referri^0 to x7) was ocre dispersed than ais, whereas was less

dispersed than 8j5 :
in other words, the rows would have more effect on the
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regression coefficients for the seventh variable than on the fifth, whereas

the situation would be reversed for the columns. The simplest assumption

is, therefore, to suppose Aa, Ab, and Ac, in a suitable scaling of the x's,

all have constant diagonal entries, though possibly varying with the matrices- -

the interaction, for example, might, apriori, be judged smaller than the main

effects.

Having settled on the diagonal elements in A , It remains to consider
-u

the off-diagonal values, or effectively, the cor:elAtions. There would seem

to be no real objection to putting these zero, exc,epti in one important case.

As explained above, the first predictor variable will typically he a constant

to allow for the regression surface not passing through the origin. In this

case, 0
ijl

has rather a different status from the other O's, and in particular,

it is changed substantially by altering the origin of any predictor variable.

(In the last paragraph, chfinges of scale were under discussion.) Jackson

has suggested changing the ecigin of each genuine (that is, apart from the

constant x
1
) predictor variable so that, apriori, the correlation between

ail and ais (s 1) is zero. But again, there is no necessity for this

origin being the same for the a's as for the 8's or Y's. If we suppose,

on the lines of the argument in the last paragraph, that they are, then each

of Aa, t.%.1), and A
c
may be taken to be multiples of the unit matrix.

This completes the theory of the two-way regression analysis. Essentially,

we have two groups of equations, (13) and (18), to solve for ( ?..ij ),
2

4, and E
c

[The a's and B's that occur in (18c) and (18d) can he
- -

eliminated using (16).] We have to feed in va, vb, and v
c
--we suggest

putting them all equal to p--4a, 4b, and A
c
--we suggest, after suitable

-

changes of origin and scale for the genuine regression variables, putting
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these all equal to a multiple of unit matrix, say _Au = (Sul . The data enter

through the sufficient statistics XijXij, Xijyij, and the sum of squares in

(18a). Equations (13) and (18) are fairly involved and decidely non-linear.

They, therefore, raise several problems in numerical analysis when we go to

solve them. We only offer a few comments on a possible mode of solution.

Notice that any computational procedure ought to output the inverse

of the matrix on the left-hand side of (13) since this provides the dispersion

matrix of the posterior distribution of (8..), exactly if the dispersions are
-13

known, approximately otherwise. We don't provide a similar dispersion matrix

for the E's since this posterior is not well-understood. Indeed, we suspect

that the estimates of the E's may not be too good, nevertheless, we believe

that any errors here will no:. seriously affect the estimation of the quantities

of primary interest, the 8's .

One possible way to solve these equations is to start with the least-

squaresestimatesfor8wtoidentifyssiwithOd.andB.J with 0 ., (16)--
-*J

9

this amounts to putting E
c

= 0--and then estimating , and - from

(18). With these values, solve (13) for Oij and obtain the a's and from

(16). These new values can be inserted in (18) again and the cycle repeated.

Another possibility is, instead of starting with the least-squares values,

guess a value for a
2 and solve (18) with this value and E

u
= A

u
(u = a, b, c).

-

From these values, the a's and B's could be found with the same original

guesses, and then the iterative procedure suggested above repeated.
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